• Background Image

    News & Updates

    data anlaytics

August 17, 2021

Digital twin & its practical implementation in Industries

Digital twin

Digital twin refers to the exact virtual prototype of an object, process, or system covering its entire life cycle. This prototype is based on real-time data and uses simulation, machine learning, and reasoning to help decision-making.  

Digital twins form a bridge between the physical and digital worlds. 

The concept of the digital twin was first used by NASA. With the development of the Internet of Things (IoT), the usage of digital twins is expanding. With the onset of Industry 4.0, the digital twin is becoming inevitable to be used by businesses of all scales to optimize and increase profits of their operations. By allowing the creation of digital copies of real-time objects digital twins have opened new avenues of production, maintenance, design, research, and innovation.

Digital twin allows designing, and real-life simulation of an entity even before it is created. This enables the production of only those products that match the standards defined. For instance, with digital twins, 10 different car models can be digitally created, and with real-life simulation can be digitally checked for possible shortcomings, and based on this a near-perfect product can be created. 

Similarly, with digital twins, it is easier to test products in different scenarios without physically requiring the test scenarios. It helps in the optimization and customization of products. In the automobile industry, a digital twin of a car can be tested to handle different collision scenarios, and accordingly, the safety procedure of the car can be updated.

Digital twins in combination with the Internet of things allows for real-time monitoring of objects. With the usage of sensors, the digital twin is continuously monitored remotely. This enables early diagnosis of any future breakdown of the object or system.

Digital twin equipped with real-time data is a tool without rivals in making predictions about possible breakdowns, future wear, and tear. This enables businesses to undertake more efficient preventive maintenance. This reduces the downtime of any unit. With a digital twin, it is also possible to identify the part most likely to malfunction and possible routes to fix the problem.

Teleoperations is one of the key advantage areas of the digital twin. Through teleoperation, it is possible to control the physical object,  system, or process remotely. It allows controlling physical objects virtually, virtual objects physically and virtual objects virtually. The combination of these possibilities helps in creating a teleoperation ecosystem.  It is of indispensable value in controlling operations in hazardous industries and the environment. 

As businesses adopt digital operations and industry 4.0, the firms employing this technology are already gaining an edge in the market. Digital twins are enabling them to better predict, design, maintain and operate their products. The availability of increasingly accurate models and predictions gives them an edge over those that have not adopted the norms yet. 

INDUSTRIES EMPLOYING DIGITAL TWIN

POWER GENERATION- Power generation industries employ humongous machinery and operation designs. Digital twin not only helps in better design and modification but also in time maintenance. This sector cannot face shut down as it provides power to all other sectors. Digital twins help in checking any possible fault well in time. 

LARGE PHYSICAL STRUCTURES AND THEIR SYSTEMS-  Digital twins are imperative in designing large physical structures such as bridges and offshore drilling operations. At the same time, the digital twin is used in the maintenance and remote operations of systems within these structures. For instance,  in the case of oil drilling, it helps to predict the depth and exact location of drilling operations most viable for the equipment.

MANUFACTURING OPERATIONS- The manufacturing operations are increasingly using digital twin at all levels. Ffom product design, customization, process, maintenance to delivery of the product.

HEALTHCARE SERVICES- Just like with physical objects, a digital twin of a human can be created. In the healthcare system, the digital twin is used to make a prognosis of the patient, try the possible treatments, check their consequences. It is being used to develop better medical facilities. 

AUTOMOBILE INDUSTRY– The automobile industry operates in complex interwoven systems. The digital twin helps in the design, simulation, and prediction of the automobile as well as that of the environment surrounding it.

These industries are the most prominent employers of digital twins but by no means the only users of digital twins. 

DIGITAL TWINS AND BUSINESS FUTURE

As per the The “Digital Twins Market by Technology, Solution, Application, and Industry Vertical 2020-2025” report

  • Up to 89% of all IoT Platforms will contain some form of Digital Twinning capability by 2025 
  • Digital twinning will become standard feature/functionality for IoT Application Enablement by 2027

How can Makoro™ assist?

Makoro™ employs a cloud-agnostic approach that fully leverages the customer’s infrastructure and installs on the edge, in public/private/hybrid cloud, and in the customer’s data centers to expedite deployment. Makoro™ is also available as a fully managed application suite on Makoro™ Cloud.

Makoro™ Predictive Asset Performance Management solution collects and correlates data from the manufacturer’s internal applications, inventory management systems, and maintenance management systems in real-time and generates recommendations for optimizing asset and workforce utilization while reducing overall maintenance costs. The digital performance twin in Makoro™ Mind constructs an asset health and performance model from data from linked devices and maintains it through periodic re-training. As a consequence of real-time IoT data from the asset, engineers have a full picture of how the asset is operating. Makoro™’s Performance Twin enables the identification of possible asset issues, remote troubleshooting, and integration with Makoro™’s Recommendation System to offer contextual suggestions for proactive asset performance improvement.

And, because Makoro™ enables secure access to your plant’s predictions, insights, and recommendations from any device, it plays a critical role in your remote operations strategy, enabling your operations executives to make more informed, timely, and consistent decisions about their plant’s operations remotely.

Request a demonstration to discover what Makoro™ can do for your business.

May 29, 2021

Why Industry 4.0 Adoption Has a Significant Upside

Why Industry 4.0 Adoption Has a Significant Upside

When manufacturing began to embrace digital technology a decade ago, it acquired a new term: smart manufacturing, or Industry 4.0. By incorporating cloud, automation, advanced analytics, machine learning, and big data into manufacturing and supply chain management operations, a connected ecosystem for manufacturing and supply chain management was created, which grew into a market that is experiencing rapid growth.  In Jan’20, the sector was poised to double in size to more than $300 billion over the next five years.

Then came the pandemic. By early spring, millions of workers had been laid off. Several plants halted production temporarily or reduced output to allow workers to spread out and maintain a safe distance from one another. Investment in smart manufacturing also decreased by 16%. According to some researchers, such a pullback would dampen investment through 2025.

However, manufacturing executives and service providers indicate that investment in smart manufacturing will accelerate. It is more than $400 billion by 2025. This is because Industry 4.0 technologies improve operational efficiency, strengthen supply chains, and enable a more personalized customer experience and the potential for data-driven top-line growth.

Before COVID-19 impacted the manufacturing and delivery processes for every conceivable product, some businesses had already begun a digital transformation.

For instance, the automotive industry has already embraced new business models in order to address strategic imperatives such as connected and electric vehicles, as well as automated and shared solutions. The pandemic provided additional impetus for businesses to rethink their digital strategy, accelerate their migration to these technologies, and reduce their reliance on specific locations, thereby increasing their operational resilience.

As a result, supply chains in manufacturing have become increasingly complex and integrated. The Demand for more efficient equipment and increased manufacturing yield has increased significantly. Enterprises are now leveraging applied analytics to predict and mitigate operational disruptions within and across plants and the supply chain.

Instruments of the New Age

Businesses are increasingly using digital twins. AR & VR technologies are being used in a variety of applications, most notably for equipment maintenance and employee training in manufacturing plants. 4G, LTE, and 5G networks are being established to support low-latency communications required for machine-to-machine communication and edge computing within plants. Cybersecurity, cloud computing, and the IoT are also gaining traction.

At the same time, cybersecurity is increasingly becoming a challenge that is getting a lot of attention. We’ve already seen numerous instances of hackers attempting to penetrate manufacturing sites, such as the malware attacks that brought a pure-play semiconductor company to a halt. The number of IoT devices could triple to tenfold its current level. And each device provides a point of entry for hackers. Simultaneously, multinational manufacturers must comply with local regulations.

Smart manufacturing enables more adaptable, customized manufacturing setups, frequently utilizing additive manufacturing solutions to deliver personalized products and enhance the customer experience. At the heart of these capabilities are the digital platforms and backbone: 5G network technology, IoT-related technologies, cloud-based applications, and systems, as well as automation and artificial intelligence, which serve as the foundation for analytics used to optimize manufacturing operations.

Since the lockdown, businesses have figured out how to operate without physically entering the plant. Businesses are shifting their focus to cloud computing, automation, and AI, and advanced analytics. Additionally, they are relocating supply chains closer to their locations and exploring alternative sources for raw materials and components.

However, despite this high level of interest and activity in predictive analytics, the adoption rate is only about 25%. This bodes well for future investment and a stronger recovery post-COVID. By 2025, the growth rate could add an additional 30% in industry 4.0 investment over what was anticipated.

What does this all mean?

One thing is certain: to reap the benefits of smart manufacturing technology, manufacturing companies will require partners who can assist them in implementing and rapidly scaling up the technology. The more providers that can assist manufacturers, owners, and operators in maximizing the value of their investment in digital initiatives, the greater the frontline adoption of these technologies.

How can Makoro™ help?

In order to accelerate deployment, Makoro™ uses a cloud-agnostic model and leverages customer’s infrastructure 100%, and deploys on the edge, in public/private/hybrid cloud, and in customer’s data centers. Makoro™ also optionally deploys on Makoro™ Cloud as a fully managed application suite.

Makoro™ Predictive Asset Performance Management solution continuously and effortlessly gathers and correlates data from the manufacturer’s internal applications, inventory management systems, and maintenance management systems. It generates recommendations for optimizing asset and workforce utilization while lowering overall maintenance costs. 

The digital performance twin in Makoro™ Mind uses data from connected devices to construct the asset health and performance model and keeps it updated through periodic re-training. As a result, engineers have a complete view of how the asset is performing through real-time IoT data from the asset itself. The Performance Twin in Makoro™ helps identify potential asset problems, troubleshoot from anywhere. It integrates with Makoro™’s Recommendation System to deliver contextual recommendations to proactively improve asset performance.

And since Makoro™ provides secure access to your plant predictions, insights, and recommendations anytime, anywhere, and from any device, it plays a key role in your remote operations strategy, allowing your operations executives to make better, faster, timely, and consistent decisions about their plant operations remotely.

Schedule a demo to see what Makoro™ can achieve for your business.

May 17, 2021

Take control of your proprietary data

Take control of your proprietary DATA

The current IoT landscape is highly OEM-centric – it is heavily OEM-data-biased and at first services the interests of the equipment manufacturer. The end customers, the asset operators, plant owners, and process owners, have been sharing their operational data with their OEM equipment suppliers in return for insights into asset conditions and improved maintenance. And depending on the strategies deployed by the OEM, the end customers and operators often have valid concerns about the credibility of these insights delivered by the OEMs. And more often than not, it is impossible to get a true understanding of the approaches that led to the insights. (Take the over-simplified example of auto-manufacturer-recommended oil change every 3,000 miles.)

However, the end customers are increasingly demanding improved equipment and process reliability across their whole asset/equipment estate. This estate includes operational assets from multiple OEM providers across the entire set of manufacturing and medical laboratory processes, across multiple geographies, with multiple technologies and wide variations in equipment age. And every organization needs a systematic and coordinated set of activities and practices which sustainably manages all its assets’ performance, risks and expenditures over their life cycles for the purpose of achieving the organizational strategic plan. 

Given these conditions, reliance on OEM recommendations not only leads to fragmented asset management strategies across the estate, but these recommendations have mostly proven to be the least effective for assets with medium to high criticality.

End customers and asset operators require clear and accurate recommendations on process optimization. Unfortunately, many consider this information to be their proprietary data, their playbook, their operational cookbook, and this is confidential to their ecosystem. In addition, many manufacturing or process operations are competitive and thus deferential to their product offering and cost. 

There is a trend in which end-customer business models move to a lower-cost model, with the lower deployed operational resource. However, employed process technology generally is increasing in complexity. 

Makoro™, therefore, recommends and delivers continuous improvement in quality and asset/equipment total through-life cost while maintaining high process availability (OEE) and delivering a reduction in downtime based on the end customers proprietary data from their whole ecosystem while still sharing nominated data with selected OEM providers. 

Makoro™ is a technology for the end-user, the asset operator.

Makoro™, by design, works with multiple and simultaneous data sources, protocols and connected and non-connected devices, legacy operational, and maintenance data. You do not have to have IoT fully deployed with every edge device reporting to get immediate value. 

We sell directly to the asset operators, through process consultants and also to OEMs that recognize any IoT platform must support all the process stakeholders while protecting the intellectual proprietary of the end customer process. 

We also licence our technology via API to extend the capability offering of already deployed  Enterprise Asset Management (EAM), Field Service Management (FSM), Asset Performance Management (APM), Computerized Maintenance Management (CMMS) and Enterprise Resource Planning (ERP) systems. 

Too many people tell you where the problem is, but shy away from recommending solutions. This is where Makoro™shines – we not only pinpoint the problem but also recommend solutions.

Makoro™ lets you take control of the proprietary data you collect from your line and your manufacturing process devices. You decide what you wish to share with the OEMs providing your equipment maintenance.

Sign up for a 10-Day Outcome Challenge to learn more about what Makoro™can do for your business.

 

May 12, 2021

Industry 4.0 – The Data analytics revolution

Industry 4.0 - The Data analytics revolution

Manufacturing is embarking on a data-driven revolution, but as with all transformations, realizing its full potential will take the right actions, both individually and collaboratively. Within a few years, manufacturers will collaborate in hyperconnected value networks where data and analytics technologies will drive competitiveness, new consumer experiences, and societal and environmental impact.

Indeed, data and analytics are critical to realizing the “Factory of the Future” because they allow transparency, prediction, and augmented and autonomous systems.

Already today, leading manufacturers are leveraging data and analytics to meet their performance, sustainability, and resilience goals. The imperative to increase efficiency and productivity is motivated by extreme cost pressures as well as liquidity concerns resulting from market disruptions caused by the COVID-19 pandemic. Many businesses prioritize sustainable operations – 79% have set a net-zero target, according to a recent Boston Consulting Group (BCG) survey of over 1,700 manufacturing executives. Simultaneously, businesses are attempting to create more robust and connected supply chains in order to predict and react more quickly to disruptions.

The majority of businesses are aware that data and analytics are transforming the way they produce products. 81% of survey respondents report having introduced at least one data and analytics use case, and 72 percent report that the value of data and analytics has risen over the last three years.

Despite their lofty goals and compelling value propositions, businesses have yet to realize the full potential from their analytics initiatives. Currently, only 16% of manufacturing executives report that their business has derived value from data and analytics. While the majority of companies have deployed at least some use cases, only 37% have scaled applications outside particular areas of a factory.

One factor is the focus on data. That may sound like an oxymoron, and it is. The holistic purpose of what your business needs is lost when you focus too much on the data and how it should be made available.

Instead, Makoro™ focuses on the value that your data can deliver to your business. Specifically in terms of predictions, insights and recommendations, thereby providing companies with the agility and capacity to foresee. It helps in planning for changes in process efficiency, employee engagement, and asset performance.

This results in a rapid increase in decision-making continuity and transparency.

Leaders who adopt Makoro™ report an increase in operational agility between 21% and 35%.